Author Affiliations
Abstract
1 State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Shaanxi Joint Key Laboratory of Graphene, School of Microelectronics, Xidian University, Xi’an 710071, China
2 MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
3 Shanghai Energy Internet Research Institute of State Grid, 251 Libing Road, Pudong New Area, Shanghai 201210, China
The realization of high-Q resonances in a silicon metasurface with various broken-symmetry blocks is reported. Theoretical analysis reveals that the sharp resonances in the metasurfaces originate from symmetry-protected bound in the continuum (BIC) and the magnetic dipole dominates these peculiar states. A smaller size of the defect in the broken-symmetry block gives rise to the resonance with a larger Q factor. Importantly, this relationship can be tuned by changing the structural parameter, resulting from the modulation of the topological configuration of BICs. Consequently, a Q factor of more than 3,000 can be easily achieved by optimizing dimensions of the nanostructure. At this sharp resonance, the intensity of the third harmonic generation signal in the patterned structure can be 368 times larger than that of the flat silicon film. The proposed strategy and underlying theory can open up new avenues to realize ultrasharp resonances, which may promote the development of the potential meta-devices for nonlinearity, lasing action, and sensing.
all-dielectric metasurface bound states in the continuum optical nonlinearity topological configuration 
Opto-Electronic Advances
2021, 4(6): 06200030
Author Affiliations
Abstract
1 Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China
2 State Key Laboratory of Optoelectronic Materials & Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
3 Department of Electronics and Nanoengineering, Aalto University, Espoo FI-00076, Finland
4 QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo FI-00076, Finland
5 e-mail: jlzhao@nwpu.edu.cn
We report an indium phosphide nanowire (NW)-induced cavity in a silicon planar photonic crystal (PPC) waveguide to improve the light–NW coupling. The integration of NW shifts the transmission band of the PPC waveguide into the mode gap of the bare waveguide, which gives rise to a microcavity located on the NW section. Resonant modes with Q factors exceeding 103 are obtained. Leveraging on the high density of the electric field in the microcavity, the light–NW interaction is enhanced strongly for efficient nonlinear frequency conversion. Second-harmonic generation and sum-frequency generation in the NW are realized with a continuous-wave pump laser in a power level of tens of microwatts, showing a cavity-enhancement factor of 112. The hybrid integration structure of NW-PPC waveguide and the self-formed microcavity not only opens a simple strategy to effectively enhance light–NW interactions, but also provides a compact platform to construct NW-based on-chip active devices.
Photonics Research
2020, 8(11): 11001734
Author Affiliations
Abstract
1 MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
2 Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China
3 Department of Electronics and Nanoengineering, Aalto University, Espoo, FI-00076, Finland
4 QTF Centre of Excellence, Department of Applied Physics, Aalto University, Espoo, FI-00076, Finland
The position-dependent mode couplings between a semiconductor nanowire (NW) and a planar photonic crystal (PPC) nanocavity are studied. By scanning an NW across a PPC nanocavity along the hexagonal lattice’s Γ – M and M – K directions, the variations of resonant wavelengths, quality factors, and mode volumes in both fundamental and second-order resonant modes are calculated, implying optimal configurations for strong mode-NW couplings and light-NW interactions. For the fundamental (second-order) resonant mode, scanning an NW along the M – K (Γ – M) direction is preferred, which supports stronger light-NW interactions with larger NW-position tolerances and higher quality factors simultaneously. The simulation results are confirmed experimentally with good agreements.
230.5298 Photonic crystals 160.4236 Nanomaterials 260.5740 Resonance 
Chinese Optics Letters
2019, 17(6): 062301

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!